FLUID

FLUID DYNAMICS EXCELLENCE WITH ANSYS FLUIDS

Ansys Fluids

REVOLUTIONIZING FLUID SYSTEM DESIGN

Ansys Fluids provides a comprehensive set of simulation tools for analyzing fluid dynamics, enabling engineers to design and optimize a wide range of fluid systems. From aerodynamics to thermal management, Ansys Fluids offers high-fidelity simulations and advanced solver technologies to tackle complex fluid flow challenges. With a user-friendly interface and robust capabilities, Ansys Fluids helps engineers innovate and optimize designs for improved performance and efficiency.

Capabilities

Turbulence Modeling

Choose from a wide range of industry leading RANS, LES & hybrid models. Fluent offers GEKO turbulence model that can be adjusted for different flow regimes with tunable coefficients.

Multiphase Flows

Engineers must account for interactions between liquids, solids and gases for accurate simulations of Industrial applications. Ansys Fluids provides accurate models like VOF, Eulerian and DPM models to account for gas-liquid, liquid-liquid, gas-solid, particle flows and even DEM.

Aeromechanics

Undertake accurate & rapid aeromechanical simulations of rotating components by reducing the geometry to a single passage with Transient Blade Row methods, solve the problems with time marching or harmonic balance methods.

AERO

Turbo-Designer Language

Easily model complex 3D blade geometries with turbo-designer language. Control blade angles & thickness on 2D span-wise layers.

ICE

Ice Accretion

Ice accretion on aircraft surfaces like pitot probes and wings can be calculated while accounting for roughness distributions of glaze, rime or mixed-type ice.

PACKING

Better Packing

Prevention of damage to products requires efficient packing. Apart from a sustainability perspective, packing is an additional cost. Design, evaluate and test the design’s durability and behaviour with Ansys Polyflow. Take corrective actions with greater insights during the manufacturing phase and create efficient lighter packaging.

TURB

Fully Automatic Topology & Meshing

Ansys TurboGrid automates mesh generation for complex blade geometries with exceptional quality. Users specify final mesh size, triggering automatic execution for high-quality results. It ensures excellent grid angles, smooth mesh transitions, and efficient resolution of boundary layer flows.

Fluid Products

Ansys Fluent

Ansys Fluent provides the opportunity for greater innovation and optimization of product performance. Rely on simulation results from software that has undergone extensive validation across diverse applications. With Ansys Fluent, explore advanced physics models and analyze various fluid phenomena, all within a customizable and intuitive environment.

Ansys CFX

Renowned for its exceptional robustness, CFX stands as the premier CFD software for turbomachinery applications. Its solver and models are enveloped within a modern, user-friendly, and adaptable GUI, offering extensive customization and automation capabilities through session files, scripting, and a potent expression language. Highly scalable high-performance computing accelerates simulations, encompassing pumps, fans, compressors, and turbines.

Ansys Blademodeler

Ansys Blademodeler aids in the design of a wide range of rotating machinery. This software for blade design provides comprehensive control over 3D geometry modeling, and it also supports the import of non-bladed equipment from other CAD software, with compatibility across all major CAD vendors.

Ansys FENSAP-ICE

Ice accretion presents a complex phenomenon that proves exceedingly challenging to replicate through physical testing. However, comprehending and mitigating it is crucial for safety, product performance, and adherence to strict regulations. FENSAP-ICE offers convenience by addressing all major aspects of in-flight icing. With no significant geometric constraints, it finds application across aircraft, rotorcraft, UAVs, jet engines, nacelles, probes, detectors, and other installed systems.

Ansys Polyflow

Ansys Polyflow expedites the design process while reducing energy consumption and raw material requirements in manufacturing processes. It aids in the examination of the performance of novel plastics and elastomers. Through virtual prototyping, optimization, and design exploration, Polyflow facilitates waste reduction and minimizes overdesign.

Ansys TurboGrid

Ansys TurboGrid stands out as top-notch turbomachinery meshing software, boasting innovative automated mesh generation features within an intuitive, streamlined workspace. These versatile tools are applicable across a diverse range of turbomachinery equipment, enhancing the quality of simulation outcomes.

Ansys Vista TF

2D through flow simulation represents a crucial phase in the design process of rotating machinery. Vista TF offers rapid solutions, providing valuable insights into your design and uncovering unforeseen issues. Conducting initial design iterations in 2D before transitioning to detailed 3D analysis can significantly diminish development time and alleviate engineering resource burdens.

Ansys EnSight

Ansys EnSight stands as the industry-leading data visualization tool, known for its user-friendly interface. It excels in managing vast simulation datasets across various physics and engineering domains. This software is adept at integrating data from diverse engineering simulations, aiding in the analysis and elucidation of intricate systems and processes.

Ansys Chemkin-Pro

CHEMKIN-Pro is a used for modeling complex reaction engineering real time problems created by Ansys. It is commonly used for precise chemical kinetics modeling and analysis in the process of combustion, chemical science, and environmental applications. CHEMKIN-Pro includes tools for creating comprehensive chemical kinetic processes, simulating chemical reactions, and examining reaction pathways. Users can import chemical mechanisms from databases such as GRI-Mech, as well as precise mechanisms for specific fuels and reactions, or design their own mechanisms. CHEMKIN-Pro can be used in conjunction with CFD software such as Ansys Fluent to simulate comprehensive combustion with complex chemical kinetics.

Ansys Forte

Ansys Forte is a specialized computational fluid dynamics (CFD) software tool developed by Ansys, Inc. It is specifically designed for positive simulating displacement compressor internal combustion engine processes, including gasoline, diesel, natural gas, and hydrogen-fueled engines. Ansys Forte offers advanced modeling capabilities to accurately predict engine performance, emissions, and combustion characteristics under various operating conditions. Ansys Forte leverages Ansys Chemkin-Pro solver technology for validation of gas phase and surface chemistry. Users can choose from various combustion models depending on the complexity of the combustion process and the level of detail required. Ansys Forte supports multiphase flow modeling to simulate the complex interactions between fuel spray, air, and combustion products within the engine cylinder. The software includes models for fuel injection, atomization, vaporization, and turbulent mixing of fuel and air.

Ansys Model Fuel Library

The Model Fuels Library (MFL) includes detailed and validated reaction mechanisms for over 70 fuel components that are relevant to combustion simulations in a wide variety of industrial and commercial applications. The fuel components can be used to represent gaseous or liquid fuel combustion for petroleum-derived or alternative fuels. Gaseous components include natural gas, synthetic gas, biofuels and blends. For liquid fuels, the fuel components can be used in formulating surrogates for a wide range of real-world fuels, including gasoline, diesel, jet fuel, alternative fuels, fuel blends and additives.

Ansys Rocky

It is specifically designed to address the challenges associated with simulating the behavior of particles and powders in industrial processes such as bulk material handling, mixing, milling, crushing, and granulation. Ansys Rocky offers advanced modeling capabilities to accurately predict particle behavior, particle-particle interactions, and equipment performance under various operating conditions. Ansys Rocky is based on the Discrete Element Method (DEM), which simulates the behavior of individual particles or discrete elements within a bulk material. Users can define particle properties such as size, shape, density, and material properties to accurately represent different types of particles and materials and also an customize equipment geometry, operating conditions, and material properties to simulate specific industrial processes and equipment configurations.

Ansys Thermal Desktop

Thermal engineers can build models of small parts and entire systems with Thermal Desktop. Due to its general-purpose nature, it can be used for a wide range of applications, including planetary exploration systems and commercial submarine components. In the 3D design environment of AutoCAD, environment definitions are integrated with objects that are finite difference and finite element. In addition to launching SINDA/FLUINT for the solution and generating the node and conduction network.

Applications

combustion
Combustion Stability
Combustion stability is a paramount concern as it can lead to engine component erosion. Use Ansys to ensure stable and efficient combustion, preventing damage to engine components.
View Application
Aerodynamics
Ansys simulation empowers you to enhance automotive & aerospace exteriors by minimizing drag, decreasing weight, and enhancing fuel efficiency and range.
View Application
gasturbines
Gas Turbines
Ansys gas turbine simulation solutions empower you to conceptualize and enhance the design of next generation gas turbines.
View Application
gasliquid
Gas Liquid Systems
Discover how Ansys' multiphysics simulation allows you to effectively upscale gas-liquid process equipment for enhanced yield and efficiency optimization.
View Application
mixing
Mixing
Ansys fluid mixing simulation tools aid in modeling the process of mixing and blending one or more fluid-like materials.
View Application
batterysimulation
Battery Simulation
Ansys empowers you to enhance battery designs by balancing safety, performance, size, cost, and reliability, positioning you as a market leader. The multiphysics battery simulation solution facilitates the integration of interdisciplinary expertise across various scales.
View Application